ROB 550 Botlab Report - Team 2 (PM)

Yung-Ching Sun, Tung Do, Liangkun Sun
{ycs, tungsdo, liangkun}@umich.edu

Abstract—This report presents our implementation and
evaluation of controllers, a SLAM system, and planning
algorithms on the MBot platform as part of the ROB 550
BotLab project. Acting, perception, and planning are three
critical elements for mobile robots to operate accurately in
the real world. We began by implementing and evaluating
wheel-speed and motion controllers for MBot, enabling ef-
fective acting capabilities. Next, we developed an occupancy
grid map implementation to build an environmental map
based on laser scans and robot poses. We then implemented
a particle filter with action and sensor models for robot
localization, forming a complete SLAM system for MBot’s
perception. Finally, we implemented A* path planning
and frontier-based exploration algorithms, providing rea-
soning capabilities for autonomous decision-making. Our
controllers, SLAM, and planning system demonstrated
excellent accuracy in comprehensive evaluations. Overall,
this project provided hands-on experience with core mobile
robotics capabilities, including speed and motion control,
localization, mapping, planning, and autonomous explo-
ration, all implemented into a real-world robotic system.

I. INTRODUCTION

Mobile robots are autonomous systems designed to
navigate and interact with their environment without
human intervention. For effective operation in real-world
applications, they require capabilities such as precise
movement, mapping, localization, path planning, ob-
stacle avoidance, and environmental exploration. This
project focuses on implementing the core components
of a mobile robot — acting (controllers), perception
(SLAM), and planning — using the MBot platform.

MBot Classic platform integrates a differential drive
mechanism powered by brushed DC motors with mag-
netic encoders. The robot’s computation is handled by
a dual-processor architecture: a Raspberry Pi 5 for re-
mote development and high-level processing (SLAM and
planning) and a Raspberry Pi Pico that manages low-
level sensor data acquisition and motor control. A 2D
LiDAR and a camera are connected with Raspberry Pi 5
for sensing, and the robot is powered by a 12V lithium-
ion battery. The development was done in C and C++
with communication and message logging handled using
Lightweight Communications and Marshalling (LCM).

This report details our implementation of controllers,
SLAM, and planning system for MBot Classis. Section|[]]
describes the development of wheel speed calibration,
odometry estimation, a wheel speed PID controller,

and a motion controller. Section [introduces our
SLAM implementation, covering mapping, localization,
and particle filters. Section presents the planning
and exploration modules, including obstacle distance,
A* path planning, frontier-based exploration, and local-
ization from unknown starting positions. Each section
includes our implementation methods, evaluation results,
and discussion on potential improvements.

II. CONTROLLERS
A. Wheel Speed Calibration

1) Methodology: Before starting to run our robot, we
have to perform the calibration. During the calibration
process, varied PWM commands are sent to each wheel
motor, and the corresponding wheel speeds are recorded.
The calibration data provides: encoder polarity, motor
polarity, and the slopes m and intercepts b that define
the relationship between the PWM duty cycles and the
actual speeds of the wheel:

PWM = m X speed + b (1)
This relationship allows us to know the motor punch that
could help with handling motor frictions and it could also
serve as future reference in the feed-forward controller
for our wheel speed control.

Left Motor Right Motor

) Speed (mis)

Fig. 1. Motor calibration results. Plots of PWM versus speed for left
wheel motor (left) and right wheel motor (right).

2) Results and Discussion: We performed the cali-
bration 4 times using the same MBot on a concrete floor
in the lab. The data are shown in Table the mean
and variance of slopes and intercepts for each wheel
motor are summarized in Table [} and the plots of PWM
versus speed are shown in Fig. |[Il} We can see that the
variance of positive/negative slopes and intercepts for
both wheel motors are less than 0.0001, which is very

small. The potential sources of variation could be caused
by: different areas in the lab might have slightly different
friction, the mechanical mounting missalignment and
condition of the wheels, battery voltage level, sensor
noise. Therefore, performing calibration before running
the MBot is critical for ensuring accurate motor control.

TABLE I
MOTOR CALIBRATION RESULTS WITH VARIANCE

Positive Slope Negative Slope Positive Intercept Negative Intercept

Motor Mean Var. Mean Var. Mean Var. Mean Var.

Left 0.065 2.39E-05 0.059 1.82E-05 0.049 1.67E-05 -0.061 7.76E-05

Right 0.059 1.65E-05 0.068 1.20E-05 0.066 1.77E-05 -0.056 2.06E-06
B. Odometry

1) Methodology: For a mobile robot, accurate odom-
etry estimation is crucial to allow the robot to de-
termine its position and orientation while moving. In
the original MBot code base, odometry is estimated
using encoder readings to calculate wheel velocity and
update the MBot’s pose using dead reckoning equations.
However, in a real robot, various systematic and non-
systematic factors, such as wheel slipping and travel
over unexpected objects, or uneven floor, can introduce
errors in odometry estimation. To mitigate these errors,
incorporating an IMU to improve odometry estimates is
a common approach. We implemented Gyrodometry [[1]
to achieve this. When the difference between the angular
velocity measured by the gyroscope (in the IMU) and
the angular velocity estimated by odometry exceeds a
threshold 0.005, we trust the gyro measurement instead;
thus, updating the robot angular velocity estimation
based on gyro readings.

TABLE 11
ODOMETRY ERROR WITH AND WITHOUT GYRODOMETRY

Pose Abs. Mean Odometry Pose Error
z (w/o Gyrodometry) [m] 0.0040
y (w/o Gyrodometry) [m] 0.0091
0 (w/o Gyrodometry) [deg] 6.6513
0 (w/ Gyrodometry) [deg] 2.7478

2) Results and Discussion: To evaluate the perfor-
mance of our odometry system, we commanded our
robot to move forward or rotate at specific linear or ro-
tational speeds, measured the actual pose difference, and
compared it with the odometry readings. Table [II| shows
the the results of the evaluation. Without Gyrodometry,
the absolute mean odometry pose errors in x and y are
less than 0.001m (1cm), which is sufficiently accurate,
so no further improvement was necessary. However,

the error in # without using Gyrodometry reached 6.65
degrees, which is not ideal. After implementing Gy-
rodometry for improvement, the error in 6 decreased to
2.75 degrees, indicating our improvement was effective.

C. Wheel Speed PID Controller

1) Methodology: Our final wheel speed controller is
implemented based on the MBot_ControlLoop handout.
In the main control loop in mbot_classic.c, we
first use mbot_ctlr () to control MBot’s body veloc-
ities, then compensated both commanded and measured
wheel velocities using the motor polarities. Next, use
mbot_motor_vel_ctlr () to perform PID control
on the motor velocities and use PWM from calibration
(we obtained the pwm-speed relationship from calibra-
tion) as feedforward to enhance the motor control. In
addition to tuning PID parameters of PID controllers,
we noticed that when changing linear or rotational ve-
locity, large accelerations or decelerations caused abrupt
and unstable robot movements and deviations from the
expected path. Therefore, we limited the acceleration
and deceleration by applying low-pass filters to both
linear velocity command (v, cmd) and angular velocity
command (w, cmd) in the body velocity controller.

TABLE III
CONTROLLER PARAMETERS

PID Param. Kp Ki Kd [Kp Ki Kd [Filter Param. Time Const.
Right Wheel 035 0.015 0.005 | 03 0.00 0.002 || V; emd 02
Left Wheel 035 0015 0.005 | 03 0.00 0002 | w. cmd 0.55

Ve 035 0015 0005 |03 000 0.002 || -

ws 035 0002 0002 | 0.3 000 0.002

Table shows the parameters in our wheel speed
controller. The 2nd to 4th columns are the PID parame-
ters we submitted for checkpoint 1. While these settings
provided good performance for the speed control, we
observed that whenever the robot reached the goal, the
wheel motors continued to move and oscillate. This
issue is mainly due to the integral gain (Ki) in the
PID controller, which accumulates past errors. When the
robot reaches the goal, any small residual error can cause
the accumulated integral to overshoot, and the controller
will continue to apply non-zero command to the motors,
resulting in unintended movement and drift. Therefore,
we retuned the PID parameters and set the integral gain
(Ki) to 0, as shown in the 5th to 7th columns, which
are our final settings. For the proportional gain (Kp), we
found that a too-high Kp could cause the system to oscil-
late. If the robot started oscillating, we slightly reduced
the P gain to stabilize its behavior. For the derivative gain
(Kd), we use it to further stabilize the system; however,
if Kd is too large, it might amplify noise. Thus, we set
Kd to 0.002, which provided good performance. For the

low-pass filters on velocity commands, we tuned the time
constant. A smaller low-pass filter time constant makes
the system follow commands more quickly but less
stably, while a larger time constant results in smoother
and more stable behavior but slower response. During
our experiments, when driving the MBot around a 1m
square, we observed that large angular accelerations
caused greater path deviation, so we set the time constant
for w, as 0.55 and v, as 0.2.

2) Results and Discussion: To evaluate the perfor-
mance of our controllers, we drove the MBot in the maze
with both slow speed (v, = 0.2 [m/s], w, = 7/4 [rad/s])
and high speed (v, = 0.8 [m/s], w, = 7 [rad/s]). As
shown in Fig. [I2] and Fig. [T4] the robot was able to
move, turn, follow paths accurately at different speeds.
In comparison to the trials before our improvement (see
Fig. [T1] and Fig. [T3), where the robot deviated from the
path each time it turned due to the lack of acceleration
limits. These results evident that the improved controllers
showed better stability and precision.

D. Motion Controller

1) Methodology: Initially, we applied the RTR (Ro-
tate «, Translate d, Rotate) controller for motion
control. It can be shown that the forward velocity v and
rotational velocity w can be controlled as: v = Kyd and
w = Kqa + KgfB. The parameters shown in Table
allow our robot to have great performance.

We also implemented the Pure Pursuit motion control
algorithm to ensure that the robot follows a smooth
curve within the waypoints. Instead of aiming directly
at the waypoint, the pure pursuit connects the robot
(zr,yr) and the goal (x4,y,) with an arc. The pure
pursuit controller controls the velocity as: v, = K,L
and w, = K,,/r, where L = \/z% + y? is the distance
between the robot current point and the target point and
r = L?/2yz is the radius of curvature (r) required to
steer the robot toward the lookahead point. An additional
improvement we made is that we set L = 0.4 instead of
dynamically and frequently adjusting the velocities, so
our mbot can move more smoothly. Also, we found that
xr, and yy, cannot be calculated directly as (z, —)
and (y, — yr), this is because when the mbot turns 90
degrees, x and y will be opposite, making the movement
of the MBot go wrong after turning. Thus, we used
xy, = Lcosa and yr = Lsin« to calculate =7, and yz,
where « is the lookahead heading error. The parameters
K,, K, for the pure pursuit controller are shown in
Table [[VI

2) Results and Discussion: Fig. 2] shows the odom-
etry of the MBot driving around a Im square 4 times
before and after applying improvements to our wheel
speed and motion controllers. As shown, before our im-
provements (Fig. [2hc), the robot deviated from the path

TABLE IV
MOTION CONTROLLER PARAMETERS

Parameters
Kq=10,K,=35Kg=-02
K,=10,K,=2.0

Controller

RTR Controller
Pure Pursuit Controller

over time, with a noticeable increase in path deviation
after each turn. After the improvements (Fig. 2bd), the
robot can follow the path almost perfectly. In our real
test, our MBot successfully returned to its initial position
after completing 4 squares. Fig. [3] shows the linear and
rotational velocity as the robot drives 1 loop around the
square. It is evident that our controllers provide stable
control for both linear and rotational velocities.

i
|
L)

X poston (m)

Fig. 2. Estimated odometry pose of our MBot driving a Im square
four times. (a) and (c) show results before applying low-pass filtering
and pure pursuit control, while (b) and (d) show results after. (a) and
(b) use a single color; (c) and (d) use a time-based color gradient.

Angular Velocity vs Time

Fig. 3. Plots of the robot’s linear (left) and rotational (right) velocity
as it drives one loop around the 1m square.

III. SIMULTANEOUS LOCALIZATION AND MAPPING
A. Mapping

1) Methodology: The first step in our SLAM system
was to create an occupancy grid map of the robot’s

environment. Each cell represents the possibility it is
being occupied or free. If a laser beam from the robot
hits an obstacle, that cell becomes more likely to be
marked as “occupied.” If a beam passes through a cell,
it becomes more likely to be marked as “free.”

Log-odds were used to represent the occupied prob-
ability in each cell, ranging from -128 to 127, with 0
meaning completely unknown, negative values meaning
more likely to be free, and positive values meaning more
likely to be occupied. This format also facilitates efficient
computation and reduces the likelihood of rounding
errors. For each laser scan, we updated the map in two
parts: Hit cells (where the laser ended) were updated by
increasing the cell’s log-odds value, and Passed-through
cells (those between the robot and the hit cell) had
their log-odds decreased. To figure out which cells were
passed through by a beam, we implemented Bresenham’s
line algorithm, a classic method from computer graphics
for drawing straight lines on grids. This ensures that
every cell along the beam’s path gets updated properly.

We also accounted that our LIDAR sensor is relatively
slow. When the robot moves, the origin of the laser
rays is also going to move. Therefore, we used previous
and current robot poses and time stamps to find the
actual origin for each beam, which is implemented in
MovingLaserScan (). This is especially important
for accurate mapping when the robot is in motion, and
would also be used in sensor model.

2) Results and Discussion: Fig. [4] shows the re-
sult of our system mapping the environment from
drive_maze.log. White regions represent free space
through which the laser beams passed. Black regions
represent occupied space where the beams hit walls or
other obstacles. Gray regions are unknown areas the
robot hasn’t observed yet. As shown, some walls in
the map appear blurry (e.g., bottom right) due to the
robot not staying in that place long enough for full map
convergence, or unstable robot movement causing blurry
boundaries (e.g., bottom left). However, the overall map
has clear walls and well-defined boundaries of the maze,
indicating that our occupancy grid mapping algorithm
accurately reconstructed the environment. (The white
shadow in unobserved areas is due to issues with the
provided log file.)

One challenge in this part was tuning the parameters
for how much to increase or decrease the log-odds when
a beam hit or missed. If increasing too much, the map
became noisy with overconfident walls. If decreasing
too much, the free space was underestimated. After
testing with several log files, we found that setting
kHitOddsArg parameters to 3 usually provides stable
maps with minimal noise, but when the robot moves
fast, setting kHitOddsArg parameters to 5 could lead
to better mapping performance. In the future, we could

Fig. 4. Occupancy grid map generated from drive_maze.log. The
robot’s estimated path (blue) aligns closely with the ground-truth path
(red), and the map represents the maze structure.

improve this part of the SLAM system by integrating
obstacle distance penalties or adjusting update rates
dynamically based on how quickly the robot is moving.

B. Localization

For localization, we implemented a Monte Carlo Lo-
calization (MCL) system, which uses a particle filter to
estimate the robot’s position within a known map. This
method maintains a set of particles, as the robot moves
and receives sensor data, these particles are updated
using the action model and the sensor model to reflect
more accurate beliefs about the robot’s position.

1) Action Model: The action model estimates how
the robot has moved between two time steps. It uses
data from the odometry poses to calculate the change
in position and orientation. Since odometry estimation
and wheel movements aren’t perfect, we introduce ran-
domness into the motion estimate to simulate noise and
uncertainty. For each particle, we add some variation
to its movement using a Gaussian distribution, which
helps the filter remain robust even when the robot’s
movement is not perfectly predictable. This randomness
is controlled by tuning parameters based on the robot’s
translational and rotational movement. The action model
predicts how the robot moves over time using odometry
data. It calculates the change in the robot’s position
(Az, Ay) and orientation (A#) between two timestamps.
Using the rotate-translate-rotate motion rule, where d,.,¢1
is the initial rotational change to face the direction of
motion, §s-qns translational change along that direction,
and d,.¢2 is the final rotational change to reach the new

orientation. The action model we utilized is as follows:
Orot1 = atan2(Ay, Az) — b

Surans = /(B2) + (Ay)? 2)
Orotz = A0 — drot1
Srotl = Orot1 — sample(k15fot1)
Otrans = Strans — sample(ksd7,) &)
3rot2 = Orot2 — Sample(klégoﬂ)

where sample() is Gaussian distributions that introduce
uncertainties to the action. The new particle pose is

updated as:

o =x+ Strans : COS(G + Srotl)

yl =Y + 6trans) 5111(9 + 6’I‘Ot1) (4)

9 =0 + 6’rot1 + 6rot2

2) Parameters in Action Model: For the parameters

in our action model, k; reflects the uncertainty in rotation
and ko reflects the uncertainty in translation. Therefore,
we tested our action model with different log files to
see whether the localization when turning is unstable
(tune kp) or moving forward is unstable (tune k2) to
balance the localization responsiveness and stability. We
found that smaller values lead to less noisy predictions
but risk convergence failure, while larger values spread
the particles too much. Additionally, the action model
should not update the particles if the robot is not moving.
We set parameters for minimum translation and rotation
threshold to prevent the action model too sensitive to
some slightly unstable robot movement. After some
experiments, the parameters we choose to use are shown
in Table [V] These values ensure our particle filter could
operate effectively without overly aggressive spreading
or collapse, resulting in a good localization performance.

TABLE V
PARAMETERS FOR THE ACTION MODEL

Parameter k; ko

0.01 0.03

Min. Translation [m]

0.0025

Min. Rotation [rad]
0.02

Values

3) Sensor Model: The sensor model in our Monte
Carlo Localization (MCL) implementation plays a cru-
cial role in evaluating how well each particle’s predicted
pose matches the actual environment. It assigns a like-
lihood (or weight) to each particle based on how well a
simulated laser scan from that pose aligns with the map.
To achieve, we simulate each ray in a laser scan using
the particle’s pose and trace the expected endpoint in
the occupancy grid. If the simulated endpoint lands in
an occupied cell (i.e., a wall), it is considered a match. A
higher number of matched endpoints results in a higher
weight for the particle. This process is repeated for each
particle during every update cycle.

4) Sensor Model Optimizations: To further speed
up computation without significantly sacrificing accu-
racy, we also tested the following strategies: (1) Ray
Stride: Instead of processing every single laser ray,
we used a stride of 7 (i.e., every 7th ray) to reduce
the number of calculations. This reduces computation
time while still capturing the overall scan shape. (2)
Maximum Ray Range: We limited ray evaluations to a
maximum range of 1000 (in grid units), beyond which
returns are ignored. This avoids wasting time on long-
distance rays which often do not provide meaningful

localization data. These optimizations are crucial in
making the sensor model scalable to a higher number
of particles while keeping the system real-time capable.

5) Particle Filter: The workflow of our particle filter
is shown in Fig. [/| updateFilter(). Using the odometry
estimates, the action model updates action and compute
new distribution. If the robot moves, particles will be
resample the high weighted particles from posteriors
using importanceSample function to get priors, then
the action model disperses (resample) the priors with
its action for proposals. Next, sensor model use the
likelihood to weight each particles using laser and map
knowledge and get posteriors. Finally, we average the
best 30% particles to estimate the posterior pose.

6) Particle Filter Performance within 10Hz: To
evaluate the efficiency of our particle filter, we measured
the time required to update the particles for different
numbers of particles. For a system running at 10Hz, we
need the total update time per cycle to be less than 0.1
seconds. Our initial results are shown in Table [X] and
Fig. After improving our action and sensor models.
The final results are summarized in Table We plot the
update time versus the number of particles (using 100 to
3000 particles since 5000 exceeds 0.1 sec) to observe
their relationship (see Fig. [5). The linear fitting results
indicate that the update time is linearly correlated (with
R? = 0.9890) with the number of particles. Using the
fitting result y = 0.0000166x —0.00231, we estimate the
maximum number of particles our system can support
while running comfortably at 10Hz is 6163 particles.

TABLE VI
TIME TO UPDATE THE PARTICLE FILTER

Number of Particles 100 500 1000 2000 3000
0.0017 0.0056 0.0123 0.0289 0.0495

Update Time [sec]

Update Time vs Number of Particles

0.057 @ Measured Data ¥
Fit: y = 1.66e-05x + -2.31e-03, R™2: 0.9890

4
=
@

Update Time (sec)
=4
=
=

0.01 4

0 500 1000 1500 2000 2500 3000
Number of Particles

Fig. 5. Plot of particle update time versus number of particles.

Fig.[6] shows the particle distribution (300 particles) at
regular intervals using the drive_square.log file.

This visualization shows that as the robot moves, the
particles will be updated (spread out) by action model,
then using sensor model, particles converged around the
robot’s actual path and orientation. The cloud of particles
was typically dense and converged when the robot had
good sensor visibility, followed consistent motion, and
did not move too fast.

Robot SLAM Pose and Particles in drive_square.log

0.0 1 —————— _ === SLAM Pose
! e e - « Particles
L It S
—0.2 1 f‘ ""“-m"l
! ’
’ s
! /
/
—0.4 H J
1 4
’ /
I e
. ; >
S 061 / |
@ / i
& / |
> / I
-0.8 1 I 1
/ \
’ \
’ \
’ \
/ \
~1.04 ’ v
7)
ﬂ‘t }
——— e \
-1.24 - \
e ’\
T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 12 14
X Position

Fig. 6. Robot SLAM pose and 300 particles along the path using our
particle filter on drive_square.log.

C. SLAM

‘ (bgieé?::c;:zrs) ‘ ‘ Encoder and IMU readings ‘

(] []
|

MovingLaserScan ‘ ‘
¥ odometry

(Correct Scan Origin)
copyDataSLAMUpdate(): ‘

Odometry Estimation ‘

laser scan
Update current laser scan and odometry.

laser scan { odometry, poses

‘ If first scan: initialize poses, else: skip ‘

‘ laser scan, odometry, poses

updateLocalization():
previousPose = currentPose;

updateFilter():
Particle filter main function.

‘ update action and compute new distribution of the motion

‘ If robot moves

‘ resample particles from posterior distribution

§ _prior distribution

1) Methodology: Fig. [7] shows our SLAM system
overview. The SLAM algorithm combines both Monte
Carlo Localization (particle filter) and occupancy grid
mapping. For every incoming laser scan, the robot itera-
tively estimates its position using the localization module
and then updates the occupancy grid map with new pose.

2) Results and Discussion: We ran our system with
drive_maze_full_rays.log, and compared the
SLAM-estimated pose against the ground-truth pose,
odometry pose, and the source SLAM pose provided
in the log file at each corresponding timestamp. A
visualization of the comparison is shown in Figure [§]
We can see that the SLAM pose starts deviate from
the ground-truth pose at around (1.625, -0.7), where
the odometry pose seems to have some errors. Yet, our
SLAM pose is closely align with source SLAM pose and
odometry pose. To evaluate pose accuracy quantitatively,
we computed the mean errors, maximum errors, and
Root Mean Square (RMS) errors in 2D position (x-y
plane), x direction, and y direction as shown in TablelV_'Hl

0.0 4

—0.2

—0.4

E S AM_POSE
s 067 GROUND TRUTH_POSE
= SOURCE_SLAM_POSE
& —0.81 —— ODOMETRY POSE
>
104
121
_1‘4 A T T T T T T T T
000 025 050 075 100 125 150 175
X Position (m)

Fig. 8. Comparison between estimated SLAM pose (blue), ground-
truth pose (orange), source SLAM pose (yellow), and odometry pose
(red) in drive_maze_full_rays.log.

TABLE VII
STATISTICAL RESULTS OF THE ACCURACY EVALUATION FOR OUR
SLAM SYSTEM

sampling from Action Model

SLAM Pose Compared with: Ground Truth Odometry Source SLAM

¥ _proposal distribution

map, particles, poses

‘ apply Sensor Model to weight particles

* normalized posterior distribution

‘ estimate the final pose based on the posterior distribution

particles_y_current SLAM pose

‘ publish current SLAM pose and particles

updateMap():

Update the OG map with mapping algorithm using adjusted laser scans and estimated pose,
and publish map.

Fig. 7. SLAM block diagram.

Mean Error [m] 1.1572 1.1326 0.0287
Max. Error [m] 1.6311 1.8405 0.0788
RMS Error [m] 1.2317 1.2140 0.0369
RMS Error In X [m] 0.9558 0.9725 0.0303
RMS Error In Y [m] 0.7769 0.7267 0.0209

These results indicate that our SLAM implementation
is reasonably accurate, though some deviation is present
likely due to accumulated error in pose estimation over
time and the odometry estimation errors in the log file.

Improving the performance further may require fine-
tuning the parameters in action and sensor models,
applying beam model to enhance sensor model, and
increasing the number of particles during localization.
Additionally, to assess the effectiveness of our full
SLAM pipeline in real-world scenarios, we ran our
implementation in the maze in the lab. Figure 9] shows
a snapshot of the constructed map with the estimated
path using SLAM. The trajectory appears smooth and
well-aligned with the odometry and the defined paths,
and the walls in the constructed map is clear and
precise, showing consistent and accurate mapping and
localization performance of our SLAM system.

Reset Exploration States

(Global: (4.56,1.48) Cell: (582.459) Log-odds: 0 MBOT_ODOMETRY: (3.05,0.00-0.02) SLAM_POSE: (3.05,:0.00,0.02)

Fig. 9. SLAM path (blue) compared with odometry (yellow) and
ground truth (green) in maze in the lab.

IV. PLANNING AND EXPLORATION
A. A* Path Planning

To enable our MBot to plan a path from one pose to
another within the environment, we implemented the A*
path planning algorithm [2], as shown in Algorithm [I]
A* is a graph search algorithm that computes the optimal
path by minimizing a cost function f(n) = g(n)+h(n),
where g(n) represents the cumulative cost from the start
node to current node n, and h(n) is a heuristic estimate
of the cost from the current node n to the goal node. A*
is derived from Dijkstra’s algorithm (where h(n) = 0)
and Greedy Best-First Search (where h(n) > g(n)), and
is guaranteed to find an optimal solution in a short time
when an admissible heuristic is used [3]].

1) Heuristic Function: The heuristic function h(n)
estimates the heuristic cost (h_cost) from the current
node to the goal. Defining an appropriate heuristic
function is critical for the A* algorithm. If h(n) is
admissible, meaning h(n) never overestimates the true
cost to the goal, it can be proven that A* will find an
optimal path [3]. However, if h(n) is underestimated, it
may result in longer search times to find the optimal
path. On the other hand, if h(n) overestimates the
true cost, A* may find a solution faster, but it will
not guarantee optimality. Since our system can move

in diagonal directions, we adopted the 8-way Diagonal
Distance as our heuristic function:

h(n) = Az + Ay + (V2 — 2)min(Az, Ay) (5)
where Az = |ng — gz|, Ay = |ny — gyl, n = (ng, ny)
is current node, and g = (g, g,) is the goal node.

2) Cost Functions and Obstacle Avoidance: A*
algorithm explores the node with the minimum f_cost,
where f_cost is computed as f(n) = g(n)+h(n). Here,
the g_cost g(n) represents the accumulated cost to reach
the current node n, we calculated the movement_cost
using 8-connected movement cost (1.0 for straight travel
cost and 1.4 for diagonal travel cost). Yet, a challenge
in A* arises in environments with obstacles, where the
optimal path often tends to follow the edges of the
obstacles. In real-world scenarios, this can increase the
risk of collisions due to uncertainties in the robot pose
and map. To mitigate this issue, we incorporate obstacle
distance using the Brushfire algorithm [4] within the
g_cost, which penalizes the paths that are too close to
the walls. Thus, our g_cost is calculated as:

g(n) = movement_cost + obs_dist_penalty (6)

3) Path Planning:

a) Initialization: We maintain an open list to store
unexplored nodes and a closed list to store explored
nodes. First of all, A* initializes the cost of the start
node as g_cost = 0 and h_cost = h(start) and adds
the start node into the open list.

b) Exploring a New Node: When the open list is
not empty, A* selects the node with the lowest f_cost as
the current node n to explore. In our implementation, we
used a priority queue as the data structure for the open
list to efficiently store and retrieve unexplored nodes with
the lowest f_cost. If the current node n is the goal, the
search terminates and a path is constructed using the
extract_node_path (). Otherwise, A* adds n to
the closed list and begins exploring its neighbors.

c) Expanding Neighbor Nodes: A* explores the
neighbors (denoted as kids) of the current node n
by expanding n using an 8-connected rule. For each
unexplored neighbor kid (i.e., not in the closed list),
if the kid is not in the open list or has a lower g_cost
(indicating a better path) than the one recorded in the
open list, this kid is either added to the open list or has
its costs and parent information updated in the open list.

d) Extracting Path from Nodes: By iterating
previous steps, if the goal node is reached, the
extract_node_path reconstructs the solution path
by iteratively following the parent pointers from the goal
node back to the start node. The sequence of nodes is
collected into a vector, reversed to obtain the correct
start-to-goal order, and returned as the final planned
path. If the open list becomes empty but the goal is not
reached, it indicates that a valid path was not found.

4) Pruning: When our A* algorithm generates a
path on the occupancy grid map, the path consists of
discretized grid cells, leading to an unsmooth trajectory.
In real-world scenarios, this can cause frequent or abrupt
changes in direction, resulting in unstable movement for
the MBot. To address this issue, we implemented the
prune_node_path () function to smooth the path.
We applied the cross product to check the collinearity
of three consecutive nodes (previous, current, and next)
and remove the unnecessary nodes that lie on the same
line, thereby optimizing the path.

5) Results and Discussion: Figure[T0]shows the path
(green nodes and lines) planned by our A* implementa-
tion and the actual path (blue curve) executed by our
MBot. It demonstrates that our robot can effectively
avoid obstacles and find an optimal path to the desig-
nated goal. Table [VITI] summarizes the timing informa-
tion for our A* path planning across various test cases.
Overall, our A* algorithm is able to find an optimal
path and perform efficiently in most scenarios. During
successful planning attempts, the mean pathfinding time
for each case is less than 1.0E+06 us (1 second). For
failed attempts, most test cases complete within 100 us
(0.0001 seconds). Note that in successful attempts, the
test_wide_constriction_grid case takes sig-
nificantly longer time (up to 2.55E+06 seconds). Possible
reasons are that in a wide constriction environment,
A* performs extensive node expansion to find a valid
path. Also, the 8-way diagonal distance heuristic may
not be aggressive enough. Similarly, in failed attempts,
test_narrow_constriction_grid shows long
termination times for the similar reasons. A potential
strategy for improvement is to use a more aggressive
admissible heuristic or apply weighting to the heuristic,
which can help guide the search more effectively in
constricted environments. Yet, we should also consider
that a too aggressive heuristic might make A* not find an
optimal path. A demo video showing our MBot planning
path and avoiding obstacles to defined goal: A* Demo.

Global: (2.04,-0.15) Cell: (481,394) Log-odds: 0 MBOT_ODOMETRY: (0.07.0.01,0.06) SLAM_POSE: (0.06,0.01,0.06)

Fig. 10. Path planned by A* (green) and the actual path driven by
our MBot (blue).

TABLE VIII
A* PATH PLANNING EXECUTION TIMES (IN uS)

S ful P ing A p

Test Case Min Mean Max Median Std dev
test_convex_grid 253 1435 2617 0 1182
test_empty_grid 1061 1729.67 2415 1713 552.894
test_maze_grid 4617 7012.75 7906 4617 1384.46
test_narrow_constriction_grid 1019 1086 1153 0 67
test_wide_constriction_grid 1025 8.51E+05 2.55E+06 2.55E+06 1.20E+06
Failed Planning A

Test Case Min Mean Max Median Std dev
test_convex_grid 20 25.5 31 0 55
test_empty_grid 22 43 64 0 21
test_filled_grid 15 26.2 42 24 8.95321
test_narrow_constriction_grid 14 9.24E+06 2.77E+07 23 1.30E+07
test_wide_constriction_grid 18 18 18 0 0

B. Map Exploration

While our Mbot can operate and perform SLAM under
manual control or following predefined waypoints and
paths, the ability to autonomously navigate, explore,
and map an unknown environment could significantly
enhance the robot’s autonomy and offer benefits for
various real-world applications. To achieve this, we em-
ployed a frontier-based exploration that enables the Mbot
to autonomously plan its exploration path and perform
SLAM in unknown environments.

1) Frontiers Detection: Frontiers are defined as re-
gions that lie between known free space (grid’s log-
odds < 0) and unknown areas (grid’s log-odds = 0)
of the map. To find all the frontiers within the current
map, the search begins from the robot’s current position.
A connected components search, implemented using a
Breadth-First Search (BFS) algorithm, is then employed
to identify and connect all reachable frontier cells. These
connected frontiers facilitate the selection of the robot’s
next exploration target during the exploration process.

2) Next Goal Selection and Navigation: To select
and plan the next exploration path, the centroids of all
detected frontiers are first computed. These centroids are
then sorted in ascending order based on their distance
to the robot’s current pose. For each centroid, a local
BFS is performed to find a candidate navigation goal that
is within the map and not an occupied grid. Using the
previously implemented A* path planner, we evaluate
whether the candidate navigation goal is a valid goal
that the robot can reach. If a valid path is found, it is
selected as the next exploration path. This strategy allows
the robot to efficiently and effectively explore the closest
reachable frontier while avoiding unreachable regions.

3) Exploring the Map: During exploration, the
exploration algorithm detects frontiers in the current
map using £ind_map_frontiers (). If the robot is
within a target reach threshold of 0.1 from the current
target and unexplored frontiers still exist, it plans a new
current path using plan_path_to_frontier () and

https://drive.google.com/file/d/1F5-vgWPD3XXSJygrM34kd7AkOF8DXjK9/view?usp=sharing

assigns the final position of this current path as the
new exploration target. A path length > 1 indicates
that exploration is in progress. If no frontiers remain,
meaning all frontiers have been explored, the exploration
is complete. Otherwise, if unexplored frontiers still exist
but no valid path can be found, the exploration is failed.
Note that when the exploration is nearly completed,
although no frontiers are left, the map may not yet con-
verged. To address this, we insert a us1eep(3000000)
delay that allows the robot to pause for 3 seconds to
ensure that the final portion of the map is properly
constructed. Once the exploration is complete, MBot will
set the initial starting pose as the home pose and navigate
back to return home. The result of our exploration is
shown in Fig.|16|and a demo video: Exploration Demo.

C. Map Localization with Unknown Starting Position

If the robot’s initial position is unknown, we cannot
rely on the localization method described in Section
Instead, we enhance our particle filter by initializing the
particles randomly across the map. As the robot moves
and gathers more observations, the particles are updated
and gradually converge toward the true robot pose, utiliz-
ing action model and sensor model. Specifically, particles
that are inconsistent with the sensor observations are
removed, while those with higher weights (consistent
with the observations) are retained. To improve the
performance in this task, a further enhancement of sensor
model is needed by applying the beam model to score
rays in different cases, allowing the particle weights to be
properly adjusted based on the sensor observations. With
these improvements, the robot will be able to estimate its
pose in the provided map and perform initial localization
without prior knowledge of its starting position.

V. CONCLUSIONS

The BotLab project provided a comprehensive hands-
on experience with the MBot Classic. Our experimental
results and evaluations demonstrated the high perfor-
mance and accuracy of our wheel speed and motion
controllers, SLAM system, A* path planning, and ex-
ploration algorithms. Although we did not have time to
complete tasks in the competition, we can confidently
conclude that our implementation is effective and holds
great potential for success in the competition. Future
work will be improving the robustness of our SLAM
and computational efficiency of A*, and completing
competitions to validate our implementations.

REFERENCES

[1] J. Borenstein and L. Feng, “Gyrodometry: A new method for
combining data from gyros and odometry in mobile robots,” in
Proceedings of IEEE International Conference on Robotics and
Automation, vol. 1. IEEE, 1996, pp. 423-428.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions
on Systems Science and Cybernetics, vol. 4, no. 2, 1968.

[3] R. Dechter and J. Pearl, “Generalized best-first search strategies
and the optimality of a,” Journal of the ACM (JACM), vol. 32,
no. 3, pp. 505-536, 1985.

[4] J. Barraquand and J.-C. Latombe, “Robot motion planning: A
distributed representation approach,” The International journal of
robotics research, vol. 10, no. 6, pp. 628-649, 1991.

https://drive.google.com/file/d/1ijgm9v3UQ_SITWA5KjckTsdsWd29nvAZ/view?usp=sharing

VI. APPENDICES

A. Additional Results for Controllers

TABLE IX
MOTOR SPEED CALIBRATION DATA

Parameter

Trial 1 Trial 2 Trial 3 Trial 4
Motor Polarity -1 -1 -1 -1
-1 -1 -1 -1
Encoder Polarity -1 -1 -1 -1
-1 -1 -1 -1
Positive Slope 0.067815 0.067319 0.066945 0.057611
0.061130 0.061680 0.061609 0.053372
Positive Intercept ~ 0.050854 0.048141 0.052721 0.043328
0.072003 0.063855 0.063942 0.063096
Negative Slope 0.062449 0.062237 0.061016 0.053471
0.070303 0.068879 0.068549 0.062470
Negative Intercept -0.069765 -0.055105 -0.066102 -0.051197
-0.055411 -0.056390 -0.057694 -0.054322

Robot Odometry in Maze (Slow Speed)

0.6
0.4 4
0.2 4

0.0 4

Y Position {m)

—0.2 1
—0.4 4

—0.6 4

= Odometry

== Ground Truth

0.0 0.5

Fig. 11. Drive maze result in slow speed (0.2 [m/s] and 7 /4 [rad/s])
before implementing low-pass filters on commands and an advanced

motion controller.

T
1.0

T
15 2.0

X Position (m)

Robot Odometry in Maze (Slow Speed)

0.6 1 m— Odometry

0.4 4 —=—Ground Truth
0.2
0.0 =—

—0.2 4

Y Position (m)

—0.4 1

—0.6 1

T
0.0 0.5 1.0 15 2.0 2.5 3.0
X Position (m)

Fig. 12. Drive maze result in slow speed (0.2 [m/s] and 7 / 4 [rad/s])
after implementing low-pass filters on commands and an advanced
motion controller.

Robot Odometry in Maze (High Speed)

0.75 4
—— Odometry
0.50 4 —=— Ground Truth
E 0251
g
2 0004 m—————=v—y i+ e
o)
£
> —0.25 4
—0.50 4
T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0
X Position (m)

Fig. 13. Drive maze result in high speed (0.8 [m/s] and 7 [rad/s])
before implementing low-pass filters on commands and an advanced
motion controller.

Robot Odometry in Maze (High Speed)

T
0.6 —— Odometry
0.4 == Ground Truth |

0.2

0.0

Y Position (m)

—0.2
—0.4

—0.6

0.0 0.5 1.0 15 2.0 2.5 3.0
X Position (m)

Fig. 14. Drive maze result in high speed (0.8 [m/s] and 7 [rad/s]) after
implementing low-pass filters on commands and an advanced motion
controller.

B. Additional Results for SLAM

TABLE X
TIME TO UPDATE THE PARTICLE FILTER

Number of Particles 100 500
0.0041

1000 2000 2289
0.0198 0.0406 0.0833 0.0967

3000
0.1323

Update Time [sec]

Update Time vs Number of Particles

@ Measured Data .
Fit: y = 4.23¢-05% + -9.71e-04, R"2: 0.9997

0.08

°
g
8

Update Time (sec)
o
g
2
°

002

4 500 1000 1500 2000
Number of Particles

Fig. 15. Plot of particle update time versus number of particles.

C. Additional Results for Planning and Exploration

Data to Show.
~ Show Map
~ Show Laser
~ Show Particles
~ Show Path
Show Obstacle Distances

~ Show Frontiers

Available Pose Traces:

MBOT_ODOMETRY
~ SLAM_POSE

Clear Traces

Exploration State:
Initializing
Exploring Map
Returning Home
Completed Exploration
Failed Exploration

Reset Exploration States

Global:(2.41.0.30) Cell: (496 412) Loa-odds: 0 SLAM_POSE: (-0.01.0.001.91)

Fig. 16. Exploration result in the maze.

11

Algorithm 1 A* Algorithm
1: start.g < 0.0

2: start.h < h_cost(start, goal)
3: start.parent < nullptr
4: open < {start}
5: closed +)
6: while open # 0 do
7: N 4 arg min, e open f(1)
8: open < open \ {n}
9: if isGoal(kid) then return extract Path(kid)
10: closed < closed U {n}
11: kids < expandN ode(n)
12: for each kid € kids do
13: if k& € closed then skip this kid
14: kid_g + g_cost(n, kid)
15: if kid_g < kid.g or kid ¢ open then
16: kid.g < kid_g
17: kid.h < h_cost(kid, goal)
18: kid.parent < n
19: if kid ¢ open then open < openU{kid}
20: end if
21: end for

22: end while
23: return failed to find a path

	Introduction
	Controllers
	Wheel Speed Calibration
	Methodology
	Results and Discussion

	Odometry
	Methodology
	Results and Discussion

	Wheel Speed PID Controller
	Methodology
	Results and Discussion

	Motion Controller
	Methodology
	Results and Discussion

	Simultaneous Localization and Mapping
	Mapping
	Methodology
	Results and Discussion

	Localization
	Action Model
	Parameters in Action Model
	Sensor Model
	Sensor Model Optimizations
	Particle Filter
	Particle Filter Performance within 10Hz

	SLAM
	Methodology
	Results and Discussion

	Planning and Exploration
	A* Path Planning
	Heuristic Function
	Cost Functions and Obstacle Avoidance
	Path Planning
	Pruning
	Results and Discussion

	Map Exploration
	Frontiers Detection
	Next Goal Selection and Navigation
	Exploring the Map

	Map Localization with Unknown Starting Position

	Conclusions
	References
	Appendices
	Additional Results for Controllers
	Additional Results for SLAM
	Additional Results for Planning and Exploration

