
1

ROB 550 ArmLab Report - Group 5 (PM)
Yung-Ching Sun, Rui Li, Sarah Adams

{ycs, ruili, adamssh}@umich.edu

Abstract—Computer vision and robotic arm kinematics
and control play crucial roles in robotics. The integration of
these technologies has become increasingly prevalent across
various applications. In the ROB 550 ArmLab, we explored
the integration of computer vision and robotic arm control
by implementing camera calibration, block detection with
OpenCV, and forward and inverse kinematics for a 5-
DOF robotic arm, culminating in a pick-and-place task.
To validate our approach, we integrated computer vision,
kinematics, and arm control to tackle complex challenges
such as sorting, stacking, and lining up blocks in rainbow
order. The competition results demonstrated the robustness
and effectiveness of our system.

I. INTRODUCTION

Robotic arms are a common form of robotic tech-
nology in industry, research, and avocation. There are
many different types of arms that are implemented for
a wide variety of uses. One of the most common uses
for a robotic arm is to handle repetitive tasks based on
information input and an end goal [1].

This ArmLab focuses on implementing methods to
integrate the Computer Vision with a Realsense Sen-
sor L515 and the kinematics and control of a 5-DOF,
7-motor RX200 arm to organize blocks and operate
a launching mechanism. Specifically, computer vision
and robotic arm control must collect data about the
workspace and then execute a movement plan to achieve
a specified goal. This document describes how the cam-
era calibration, block detection, and kinematics methods
were implemented to enable the arm to autonomously
detect the target blocks and their positions in the
workspace using data collected by the camera. It also
outlines how the arm plans its pose and trajectories to
manipulate blocks in various configurations, avoid colli-
sions, perform pick-and-place tasks at desired locations,
and sort, lineup, and stack blocks.

II. METHODOLOGY - COMPUTER VISION

A. Camera Calibration

Camera calibration is used to map image coordinates
to real-world coordinates in robotic vision applications.
This subsection details the calibration process for the
Intel RealSense camera, including intrinsic and extrinsic
parameter estimation via ROS tools and fiducials.

1) Intrinsic Camera Calibration
The intrinsic parameters of the RealSense camera were

obtained using the ROS camera calibration package with
a checkerboard target. To calibrate, the checkerboard
was moved across the field of view, a process which
was repeated three times and result-averaged for ac-
curacy. Alternatively, the factory intrinsic matrix can
be retrieved directly from the factory-calibrated values
via the /camera info ROS topic, which also provides
distortion coefficients. This matrix defines the camera’s
focal lengths and optical center, essential for mapping
pixel coordinates to real-world depth estimates.

2) Extrinsic Camera Calibration (Manually)
A preliminary extrinsic matrix was calculated using

physical measurements. The distances between the cam-
era and the origin of the workspace along the X, Y,
and Z axes were measured to determine the translation
vector. We approximated the camera’s orientation with
smartphone protractor application to measure its tilt an-
gle relative to the workspace. By combining the rotation
matrix and translation vector, we were able to form the
extrinsic matrix. Our hand-measured extrinsic matrix is
shown in Table III.

Now, the image coordinates can be transformed to
world coordinates by the following equations:Xc

Yc

Zc

 = ZcK
−1

uv
1

 ;


Xw

Yw

Zw

1

 = H−1


Xc

Yc

Zc

1

 (1)

where K is intrinsic matrix, H is extrinsic matrix, and
[u, v, 1]T , [Xc, Yc, Zc, 1]

T , [Xw, Yw, Zw, 1]
T are coordi-

nates in image pixel frame, camera frame, and world
frame, respectively.

3) Extrinsic Camera Calibration (Apriltag)
When using AprilTags for extrinsic calibraiton, the

accuracy was significantly improved. The four AprilTags
fixed on the workspace board provide automated and
precise estimation, reducing errors from manual mea-
surement. We detected the centers of the four AprilTags
in the image, and based on their IDs, we appended their
centers to form the image points. The world points were
assigned according to the IDs, representing the actual
positions of the AprilTags in the world frame. We then
input the world points, image points, intrinsic matrix K,
and camera distortion coefficients into cv2.solvePnP()

2

to obtain the rotation vector and translation vector. The
rotation vector was then converted into a rotation matrix
using cv2.Rodrigues(). Finally, the rotation matrix and
translation vector were combined to form the extrinsic
matrix.

4) Workspace Projection
After extrinsic calibration was completed, we applied

a homography transformation to map the workspace into
a top-down view. We extracted four AprilTag detection
center as source points and select (355, 510), (835,
510), (835, 210), and (335, 210) as destination points
to compute homography matrix. Additionally, to account
for the resolution difference between the image and the
physical workspace, we scaled these destination points
using a ratio = (720/650)∗0.975 ensured that the image
and workspace were properly aligned by compensating
for slight deviation in camera positioning and resolution.
We then input the detected AprilTag pixel coordinate
and the destination points into cv2.findHomography() to
compute homography matrix. Finally, we applied the ho-
mography transformation using cv2.warpPerspective
to warp the image, so the workspace board appears
flat and appropiately scaled on GUI, the result of the
projection can be seen in Figure 7. w

B. Block Detection

Accurate block detection requires the identification of
block contours, centers, colors, orientations, and shapes.
This section describes the methodology for detecting
and classifying blocks using both RGB/HSV and depth
information.

1) Block Contour
Block contours were extracted using depth-based seg-

mentation. The depth frame was preprocessed by ap-
plying a depth threshold to isolate objects within a
specified height range, filtering out irrelevant background
and objects taller than the target cube blocks. A binary
mask was then applied to remove regions outside the
workspace and robotic arm interference zones. Finally,
we used OpenCV’s cv2.findContours() to extract con-
tours, which detects block boundaries.

2) Block Center
We used OpenCV image moments that were computed

from the extracted contours to detect the center of blocks.
The centroid formula is:

Cx =
M10

M00
, Cy =

M01

M00
(2)

where M10 and M01 are the first-order moments, and
M00 is the zeroth-order moment (area). This centroid
serves as a reference point for mapping the block’s posi-
tion in the depth frame, allowing conversion from image
coordinates to world coordinates using the intrinsic and
extrinsic matrices.

3) Block Color
For Block color detection, we performed HSV color

space as a result of its ability to separate color in-
formation from brightness variations, making it more
robust under different lighting conditions. The HSV
space allows for more effective thresholdings to reduce
the impact of shadows and reflections. We started with a
predefined HSV range for each block color, including
red, orange, yellow, green, blue, and violet, with red
requiring two separate ranges due to its hue wrapping
around the spectrum. These thresholds were refined
through multiple iterations, adjusting the saturation and
value components to improve the detection accuracy un-
der varying illumination. The detection process involves
extracting the median HSV value from each block’s
contour and comparing it against the optimized thresh-
olds. The final method ensures stable color classification,
minimizing errors caused by lighting variations.

4) Block Orientation
The orientation of the block was determined by fitting

a rectangle with minimum area bounding around the
detected contour using cv2.minAreaRect(). This function
provides the bounding box’s rotation angle, which indi-
cates the block’s orientation relative to the camera. The
orientation angle θ is extracted and displayed for each
block, this angle ensuring accurate alignment with the
gripper during the arm manipulation.

5) Block Shape
Block shapes were classified based on contour prop-

erties, bounding box aspect ratio, circularity, and corner
detection. The classification procedure follows these
steps: aspect ratio test, circularity test, corner detection
for squares, size-based square categorization, and reduce
false positive. For aspect ratio , the bounding box’s width
and height were used in Eq 3. We choose threshold
between 0.9 to 1.1 for square shape and rectangle
otherwise. We calculate circularity in Eq 4. A value near
1.0 indicated a circular block, while lower values sug-
gested non-circular shapes. To prevent misclassification
of circles as squares, a secondary check using Harris
Corner Detection to verify if the block had four corners.
We measured squares by size, 35x35mm for large and
25x25mm for small blocks, to differentiate them. The
algorithm can different square and rectangle shape, but
for a vertical cylinder, its cycle shape can be detected as
small square depends on where it is located. The method
we used to reduce this false positive is to apply the height
since both large and small block are below a certain
height. A square shape above the height is considered as
either vertical cylinder or cuboid.

Aspect Ratio =
max(w, h)

min(w, h)
(3)

Circularity =
4π ∗Area
Perimeter2

(4)

3

III. METHODOLOGY - CONTROL AND KINEMATICS

A. Teach and Repeat

The primary goal of the teach and repeat task is for the
bot to follow a path by recording the required waypoints
and executing a playback. Functionality was added to
the control station.py and state machine.py to perform
teach and repeat for the block swapping task. The Record
Joint Position button and state will store the joint an-
gles of the waypoints into self.recorded joint positions
when clicked. When Execute button is clicked, the
set position() function will be used to playback the
recorded joint angles, and the gripper will open and close
at the specified number of waypoints to pick and place
the blocks. The waypoints were chosen to swap the two
blocks through three positions without allowing the arm
to collide with any block during path movements. The
joint angles we teach and repeat for this task is shown
in Figure 11.

B. Forward Kinematics

Forward Kinematics determines the position and ori-
entation of the end effector in the workspace given the
joint angles in the configuration space. For the RX200
arm, the configuration space q = [θ∗1 , θ

∗
2 , θ

∗
3 , θ

∗
4 , θ

∗
5]

represents the joint angles of the arm, where θi repre-
sents base, shoulder, elbow, wrist, and wrist rotate angle,
respectively. The end effector pose in the workspace
is represented as x = [x, y, z, ϕ, θ, ψ], where [x, y, z]
denotes the position and [ϕ, θ, ψ] represents the orienta-
tion relative to the base frame, in our implementation,
we use the Z-Y-X Euler angle rotation to represent the
orientation.

1) Forward Kinematics Equation
Rigid body motion can be represented by homoge-

neous transformation matrix H = [R d; 0 1], where
R is a rotation matrix, and d is the translation vector.
The pose of the end effector can then be obtained by
sequentially multiplying the transformation matrices for
each joint. Pose of the end effector in the base frame:

H = A1(q1)A2(q2) . . . An(qn) =

[
R0

n o0n
0 1

]
(5)

where Ai in our project represents the transformation
matrix from the joint frame i− 1 to the joint frame i.

2) DH Table
We applied Denavit-Hartenberg (DH) convention to

define joint frames and perform forward kinematics.
Each Ai transformation is determined by four DH
parameters: [θi, di, ai, αi], representing the joint an-
gle, joint offset, link length, and link twist. The rel-
ative transformation between consecutive joint frames
is given by Eq. (6), which is implemented in the
get transform from dh() in kinematics.py.

TABLE I
DH TABLE

ai (mm) αi (rad) di (mm) θi (rad)

1 0.00 −1.57 103.91 1.57 + θ∗1
2 205.73 0.00 0.00 −1.33 + θ∗2
3 200.00 0.00 0.00 1.33 + θ∗3
4 0.00 1.57 0.00 1.57 + θ∗4
5 0.00 0.00 152.575 θ∗5

200

50

l2

y0

z0

x0

x1

y1

z1

x2

y2

z2

x3

y3

z3

z4

x4

y4

z4

x4

y4

z5

x5

y5

l1

l3 l4 l5

l′4

θ∗3 θ∗4

θ∗2

θ∗1

θ∗5

γ

0

1

2 3, 4 5

Fig. 1. DH Frame Schematic

Ai = Rotz,θiTransz,diTransx,aiRotx,αi

=


cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1



1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1



1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1



1 0 0 0

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1


(6)

To obtain the DH parameter table for the RX200
arm, we first identified its links and joints, as shown
in Figure. 1. Then, we set the z-axes for each frame
corresponding to the positive direction of joint’s rotation
and identified the x-axes and origins using the relation
between each zi and zi−1. We set the global frame at
joint 0 frame and end effector frame at joint 5 frame.
Next, we can obtain our DH parameters by determined
how the frame rotate in z, translate in z, translate in x,
and translate in x from i− 1th frame to ith frame. Note
that we set the end effector frame in the middle of the
gripper; thus, the link lengths are [l1, l2, l3, l4, l5] =
[103.91, 205.73, 200.00, 65.00, 87.575] according to
Figure. 12, and l′4 = l4 + l5 = 152.575. Addition-
ally, the offset γ between joint 2 and joint 3 is γ =
atan2(200, 50) = 1.33. The DH table we determined
for the RX200 arm is shown as Table I.

C. Inverse Kinematics

Inverse Kinematics (IK) calculates the arm’s joint
angle values in the configuration space that allow the
end effector to reach a desired position and orientation

4

in the workspace. We use geometrical approach to find
the joint angles from the given end effector pose. The
code is in the ik geometric() function in kinematics.py.

Using the geometry relationship shown in Figure. 2,
we can simply compute the base angle θ1 (line 195):

θ1 = arctan(−x/y) (7)

Fig. 2. A schematic of RX200 from bird eye view.

Since the shoulder joint θ2, elbow joint θ3, and wrist
angle joint θ4 are co-planar, we can use the 3-link RRR
Arm IK method to find θ2, θ3, and θ4. First, refer to
Figure. 3 we can see that the wrist joint coordinate
relative to the base joint would be (line 197 to 199):xwyw

zw

 =

xy
z

+

−l4 cos(ϕ) sin(−θ1)−l4 cos(ϕ) cos(−θ1)
l4 sin(ϕ)− l1

 (8)

Fig. 3. A schematic of wrist end coordinate.

Now, we can use the 3-link Arm IK closed-form
solution to find θ2, θ3, and θ4. In the new defined arm
plane (Figure. 4), the horizontal distance from shoulder
to the wrist joint is the shortest distance from the
projection of the wrist end to the shoulder joint in X-
Y plane. The vertical distance is the height difference
between the wrist end and the shoulder joint along the
base Z-axis. Thus, the horizontal r and vertical distances
s can be expressed as follow (line 201 and 202):

r =
√
x2c + y2c (9)

s = zc (10)

Fig. 4. A schematic of our IK geometrical solution

Fig. 5. A scheme of how to determine wrist rotate angle θ5 from base
angle θ1 and block orientation α. The left one is when θ1 > 0, and
the right one is when θ1 <= 0.

Using the geometrical closed-form solution, we can
calculate θ3 as follow (line 204 to 209, and 218):

θ′3 = cos−1(
r2 + s2 − l22 − l23

2l2l3
) (11)

θ3 = θ′3 −
π

2
+ θoffset (12)

where θoffset = atan2(50, 200) is the angle between
the l2 we defined and the real arm shoulder link (line
193). Additionally, we check if the value in arccos in
Eq. (11) is valid (between -1 and 1) (line 205 to 208).
Then, we can calculate θ2 (line 211 to 213 and 219) and
θ4 (line 221):

β = atan2(s, r) (13)

α = atan2(l3 sin θ
′
3, l2 + l3 cos θ

′
3) (14)

θ2 =
π

2
− θoffset − α− β (15)

θ4 = ϕ− θ2 − θ3 (16)

To perform a smooth and accurate pick-and-place tasks
later, we utilize the block orientation detected by the
block detection function to adjust the wrist rotate angle
θ5, making it align with the block’s orientation. Refer to
Figure. 5, if the target block’s orientation is α, the wrist
rotate angle can be determined by (line 227 to 240):

θ5 =

{
θ1 − (π2 − α), if θ1 > 0,

α− |θ1|, otherwise.
(17)

5

D. Click to Grab and Drop

This task allows users to click on the control panel
to set the grasp location and then click another position
to set the drop location. The gripper will move to the
grasp position, pick up the block, and place it at the
drop position.

The first step is to record the grasp and drop po-
sitions. After starting camera calibration and block
detection, the calibrateMousePress() function in con-
trol station.py captures the first and second mouse click
position in the pixel frame, converts it into world
coordinates, and stores it in self.sm.grab position and
self.sm.drop position, respectively. If the grab position
corresponds to a detected block, its orientation is stored
in self.camera.theta for grab, which is later used in
inverse kinematics to adjust the wrist rotate angle θ5.

To execute the click to grasp and drop task, we define
a new state and function, execute pick and place(), in
state machine.py. This function retrieves the target end
effector grasp and drop position [x, y, z] and sets target
target orientation to [π/2, 0, 0]. The end effector follows
these waypoints to perform the pick-and-place task: (1)
move to 40 mm above the grasp position, (2) lower to
the grasp position and close the gripper, (3) lift up 85
mm to make sure it won’t collide with other blocks in
the workspace when it’s moving, (4) move to 85 mm
above the drop position, (5) lower to the drop position
and open the gripper, (6) lift up 40 mm again and go
back the the initialize state.

For each waypoint, we sent the desired end effec-
tor pose into self.rxarm.get ik joint() to compute joint
angles, and self.rxarm.set position() moves to the arm.
Once all the waypoints are executed, the task is success-
fully completed.

E. Competitions

We create new buttons and corresponding states
for each event to execute the task, which are
sort and stack(), line them up(), and to the sky(), re-
spectively. For Event 1 and Event 2, we employed similar
strategies and shared function to complete the tasks.
(1) Block Status Identification: Our block detection
approach mentioned in II-B filter out non-square dis-
tractors and classifies blocks by size, then store the
orientation, color, size, position, and height of large and
small square blocks in self.camera.detected large blocks
and self.camera.detected small blocks dictionaries. (2)
Sorting by Color: The sort blocks by color() function
in state machine.py sort the blocks in rainbow order
using the key in detected blocks dictionaries. (3) Un-
stacking Blocks: If a block’s detected height exceeds a
single block’s length (we set 45 mm for large and 35
mm for small blocks as thresholds), it is identified as

stacked. The unstack blocks() function guide the arm to
pick up and put aside stacked blocks.

1) Event 1 (Sort and Stack)

This event is completed by unstacking the stacked
blocks, sorting the blocks in the detected block dictionar-
ies by color, assigning target drop positions for stacking
(large at (255, -25, 36(i-1)) and small at (-200, -50, 25(i-
1)) for each ith block), and pick and place the blocks
in rainbow order with detected block center and target
drop positions.

2) Event 2 (Line Them Up)

We raise the arm for the camera to have a full view
to the workspace, unstack the stacked blocks, assign
target drop position in order to lining them up, and
execute pick-and-place sequentially in rainbow order.
Additionally, a key strategy we implemented was rotat-
ing the wrist perpendicular to the lineup direction when
dropping blocks. This prevent the gripper from colliding
with already placed blocks during the lineup process.

3) Event 3 (To The Sky)

The strategy we used in this event is to pick up the
block at (250,-25, 0) and assigned the drop positions at
(0, 175, zi), where zi = 41(i − 1) for ith block. After
picking up the block, arm lift up to straight, turn the
base to the direction that allows the arm align with the
drop position, drop the block, lift the arm straight again,
and turn the base back to the grap position.

4) Event 4 (Freethrow)

The basketball launcher is a catapult. There were
four primary considerations to the initial catapult design:
sizing, variability, arm operability, and simplicity. The
launcher was sized to fit in the required space and
achieve the required force and pointing for accurate
shots. A basic catapult was augmented to be variable
with multiple instances of features like the mount bar
track in the lever and the attachment features for the
loading mechanism so that the result of the shot could
be tuned post-manufacturing. For robot arm use, the
design incorporates large plates for arm contact to load
and release. To simplify assembly, the design is a set of
interlocking pieces manufactured with close tolerances to
be sanded until the fit is just snug enough for operation.

The final launcher design is as a spring-loaded catapult
with multiple teeth for variable loading. The catch teeth
are held in place under tension from rubber bands which
can be released by pressing a push plate to pull the catch
mechanism back away from the crossbar. The launcher
was designed in Onshape and then 3D printed in the
lab. An isometric CAD view of the launcher is shown
in Figure 6.

6

Fig. 6. The basketball launcher is a custom catapult design.

TABLE II
CAMERA INTRINSIC MATRICES COMPARISON

Method Intrinsic Matrix

Factory

900.54 0 655.99

0 900.90 353.45

0 0 1



Checkboard

910.11 0 646.84

0 912.81 348.23

0 0 1



IV. RESULTS AND DISCUSSION - COMPUTER VISION

A. Camera Calibration

1) Intrinsic Camera Calibration
The intrinsic matrices obtained from two methods are

shown in Table II. We performed three checkerboard
intrinsic matrix calibrations and averaged the results,
which showed slightly higher focal lengths (about 1.3%)
and shifts of less than 10 pixels in both x and y
directions. While factory calibration is stable and precise,
the checkerboard method reflects real-world conditions
but is prone to errors like imperfect corner detection and
environmental variations. Therefore, we chose to use the
factory calibration for the project since the camera setup
remains unchanged.

2) Extrinsic Camera Calibration
The extrinsic matrices from manual measurements

and the PnP algorithm differ notably, with a 27mm
deviation in the Y-axis and 25.5mm in Z-depth as shown
in Table III. These discrepancies might come from
manual measurement errors and noise in the PnP method.
Although there is some discrepancy in the PnP method,
the PnP automatic extrinsic calibration with AprilTags is
still more robust and automated than hand measurements
since if the camera was moved. Therefore, we decided
to use the PnP automatic extrinsic matrix to perform
calibration in the project.

TABLE III
CAMERA EXTRINSIC MATRICES COMPARISON

Method Extrinsic Matrix

Manual


0.9966 0.0259 −0.0036 15.0000

0.0262 −0.9899 0.1391 155.0000

0.0000 0.0000 −0.9903 1030.0000

0.0000 0.0000 0.0000 1.0000



Automatic


0.9989 0.0074 −0.0012 12.6852

0.0083 −0.9974 0.0715 182.1489

−0.0118 −0.0716 −0.9973 1004.4834

0.0000 0.0000 0.0000 1.0000



3) Workspace Projection
To project the workspace flat and centered on the GUI,

we used the method described in II-A4 to find our
homography matrix, the result is as follow:

Hwarp =

 1.1732 −0.0343 −149.3866

−0.0037 1.1429 −79.3426

0.0000 0.0000 1.0000

 (18)

The top-left 2x2 submatrix handles the rotation, scaling,
and shearing relative to the origin image. The bottom-
left 1x2 submatrix indicates no perspective distortion,
assuming the workspace is flat. The top-right 2x1 sub-
matrix is the translation term, indicating that there is -
149.3866 in the x and -79.3426 in the y being shifted. To
verify our calibration, we projected grid points onto the
image frame and compared them with actual positions
on the board, as shown in Figure 7. The figure shows
that the projected grid closely matched the expected
position, confirming our transformation validity. We also
routinely adjusted the camera orientation and performed
calibration to ensure our automatic calibration functions
properly. See the demo video here: Demo Video.

After all of the calibration steps, we notice that the z-
coordinates in world frame reported on the control panel
have some offset along both x- and y-axes. Therefore,
we measured the offset and applied a linear correction
to ensure the z-coordinate remains consistent at every x
and y position:

∆zwrt x = (0− (−5))
405− x

405− (−407)
(19)

∆zwrt y = (0− (−14)))
430− y

430− (−134)
(20)

zcorrected = zorigin +∆zwrt x +∆zwrt y (21)

To quantitatively evaluate our camera calibration, we
stacked different number of blocks [0, 1, 2, 4, 6] in
positions [(0,175), (-300,-75), (300,-75), (300,325)]. We
then compared the actual world coordinates with the

https://drive.google.com/file/d/1qcgWIpb4RDTCyR-i6rsgz0FEjlCAOVs6/view?usp=sharing

7

Fig. 7. Grid points after camera calibration and projection.

Fig. 8. The screenshot of detected blocks and labels after filter out
non-square blocks.

world coordinate reported on the control panel after
our calibration. Table VI shows the mean absolute error
(MAE) in x, y, and z with different number of stacked
blocks. The overall MAE of our calibrated world coor-
dinates is 6.35mm in x, 4.5mm in y, and 5.75mm in z.
This indicates that our calibration results are accurate.

B. Block Detection

Our block detection algorithm can detect both large
and small cubic blocks and label the center position and
height, orientation angle, color, and shape for each of
them. Figure8 shows only cubic blocks are used, and the
distrators are filtering out. To verify the accuracy of the
block detector, we placed 39 blocks with spacing across
the board. We aligned the block center to the grid points
for center truth, then we used block center coordinate
read from the detector and prepared a heatmap for
detection error as shown in Figure 9. The average error is
6.85 mm for large blocks and 6.09 mm for small blocks.
The errors are smaller in the center than in the corners,
as the camera is located at the center (at the top of (0,
275)). Small blocks have less detection error than large
ones, likely due to spacing. Large blocks are more prone
to misclassifying the sides as the top when identifying
contours, while smaller blocks, being shorter, are less
likely to have this type of error. Additionally, higher
errors are observed in areas closer to the arm, possibly
due to placement inaccuracies caused by the arm’s
influence. Overall, our block detection can effectively

Fig. 9. The heatmaps of detection error for both the large (top) and
small (bottom) blocks shows that the highest error was incurred in the
bottom right section of the workspace.

identify the color, size, center, orientation, shape, and
height of blocks.

V. RESULTS AND DISCUSSION - CONTROL AND
KINEMATICS

A. Teach and Repeat
The teach and repeat method successfully cycled the

blocks between the two locations. As the execution con-
tinued to cycle, there some offset in the pick and place
locations began to appear. The cycle was successfully
performed 9 times. On the 10th cycle, the arm missed
a grab. The joint angles are plotted over time for one
cycle in Figure 10, and the end effector locations for
those points are plotted in Figure 11.

B. Forward Kinematics
To verify our DH table, we move the arm to 7 points

in the workspace and record the end effector position
reported by our forward kinematics function and actual
end effector position. Table IV shows the mean error
and mean absolute error (MAE) between the reported
and actual end effector positions. Both mean error and
MAE are within 10 mm, which is an acceptable level
of accuracy. This result verifies that our DH table and
forward kinematics implementation are correct. Possible
sources of error could be inaccuracy in the joint encoders
or manually measurement inaccuracies.

8

Fig. 10. The plot of joint angles over time for 1 cycle of executing
teach and repeat task.

150 100 50 0
50

100
150

200
250

300

x

0

50

100

150
200

250
300

y

0
25
50
75

100

125

150

175

200

z

Fig. 11. The end effector positions during the teach and repeat process
were calculated from the forward kinematics process.

C. Inverse Kinematics

To verify the correctness of our IK, we use FK
for validation. Specifically, since we have validated the
accuracy of our FK approach, we assume our FK output
end effector pose as the ground truth. We placed the
arm in several positions and recorded the FK output end
effector poses, input these poses into our IK function to
compute the closed-form solutions for each joint angle.
Then, substituted the angles back into the FK to compute
the end effector poses. Finally, we check if the original
FK end effector poses match the FK end effector poses
obtained after IK to confirm the correctness of our IK

TABLE IV
FORWARD KINEMATICS ERROR

Error Function x (mm) y (mm) z (mm)

Mean Error 0.13 −3.79 −3.82

MAE 5.16 4.21 1.21

TABLE V
COMPETITION RESULTS

Event
Success

Failure/Deficiency
Practice Competition

1 Level 3 Level 3 1 block grab miss
2 Level 3 Level 1 Small on large
3 14 blocks No attempt Need fine-tuning
4 Level 1 Level 1 Arm not used

approach. The end effector pose from both approaches
was successfully matched when we moved the arm to
different positions, indicating that our IK is correct.

D. Click to Grab and Drop

This task was successfully implemented to move a
block from one position to another using two mouse
clicks on the control station image. The wrist rotate joint
also successfully turned to the angle align with block
orientation when grabbing. A demo video: Demo Video.

E. Competitions

The results of the competition event implementations
are summarized in Table V. In practice, all requirements
for Level 3 were achieved in Event 1 and 2, except
that the code could not work for setups where small
blocks were stacked on large blocks as the large blocks
are searched for first and were not detected accurately
under the small blocks. Additionally, the color detection
misinterpreted the overlapping blocks as a combination
of both colors. Furthermore, during our practice, we we
discovered an offset in the arm’s base, which led to failed
grasps. To address this, we applied a 5-degree correction
to θ1 in our IK function, significantly improving the
performance. In Event 3, we implemented the algorithm,
but did not have enough time for fine-tuning and debug-
ging. As a result, we did not attempt this event during
the competition. However, our practices show that our
strategies are feasible.

For Event 4, we did not use arm in the competition
as it do not have enough torque to depress the loading
mechanism and could not reach the center of the release
plate to execute a straight shot. The arm was able to
pick up the basketballs and place them in the launcher,
however, this process was slow and more points could
be earned by firing completely manually, resulting in
60 scored baskets. The design lab improvements to earn
more points involve increasing shot frequency, accuracy,
and aiming control by using motors for fire and pan/tilt
adjustments.

https://drive.google.com/file/d/1Nkr2TeuuOKW4SwNP5_UAV9SgTYoT1DXY/view?usp=sharing

9

VI. CONCLUSION

In this ArmLab project, the experimental data show
that our system has high accuracy in camera calibration,
block detection, kinematics, and control. While we did
not complete all competitions, practice results indicate
that our system and strategy have potential to accomplish
the challenges. We also identified areas for improvement
during the competitions. Our block detector, which relies
on contours to detect color, shape, and size, struggled
with crowded or stacked blocks, leading to detection
errors. Future work could focus on refining detection
methods and improving robustness. The arm was also
able to execute trajectories based on those detections
and our IK solution, either through waypoints or path-
planning rules. In future, more efficient path planning
rules could be implemented.

REFERENCES

[1] Devonics. (2024) The impact of robotic arms on
society. [Online]. Available: https://www.devonics.com/post/
the-impact-of-robotic-arms-on-society

[2] T. Robotics. (2024) Reactorx-200 drawings and cad files.
[Online]. Available: https://docs.trossenrobotics.com/interbotix
xsarms docs/specifications/rx200.html#drawings-and-cad-files

VII. APPENDICES

TABLE VI
WORLD COORDINATE MEAN ABSOLUTE ERROR AFTER

CALIBRATION

Stacked Blocks x (mm) y (mm) z (mm)

0 3.00 2.25 0.375
1 2.75 3.25 0.375
2 3.5 4.75 1.00
4 3.00 4.00 1.50
6 3.25 3.25 1.375

Fig. 12. The official technical drawing for ReactorX-200 Robot Arm.
[2]

Fig. 13. Video frame before calibration and projection.

https://www.devonics.com/post/the-impact-of-robotic-arms-on-society
https://www.devonics.com/post/the-impact-of-robotic-arms-on-society
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/rx200.html#drawings-and-cad-files
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/rx200.html#drawings-and-cad-files

10

Fig. 14. Video frame after calibration and projection.

Fig. 15. Depth frame before calibration and projection.

Fig. 16. Depth frame after calibration and projection.

Fig. 17. Apriltag detection result before calibration and projection.

Fig. 18. Apriltag detection after calibration and projection.

Fig. 19. Block detection result with large blocks for location error
calculation.

	Introduction
	Methodology - Computer Vision
	Camera Calibration
	Intrinsic Camera Calibration
	Extrinsic Camera Calibration (Manually)
	Extrinsic Camera Calibration (Apriltag)
	Workspace Projection

	Block Detection
	Block Contour
	Block Center
	Block Color
	Block Orientation
	Block Shape

	Methodology - Control and Kinematics
	Teach and Repeat
	Forward Kinematics
	Forward Kinematics Equation
	DH Table

	Inverse Kinematics
	Click to Grab and Drop
	Competitions
	Event 1 (Sort and Stack)
	Event 2 (Line Them Up)
	Event 3 (To The Sky)
	Event 4 (Freethrow)

	Results and Discussion - Computer Vision
	Camera Calibration
	Intrinsic Camera Calibration
	Extrinsic Camera Calibration
	Workspace Projection

	Block Detection

	Results and Discussion - Control and Kinematics
	Teach and Repeat
	Forward Kinematics
	Inverse Kinematics
	Click to Grab and Drop
	Competitions

	Conclusion
	References
	Appendices

