3D Gaussian Splatting Scene Reconstruction for Autonomous Driving
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« Street Gaussians: 4D spherical harmonics
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appearance model and tracked pose optimization.
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 OmniRe: Model diverse, non-rigid dynamic actors from
occlusions and cluttered environments.
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« STORM: Feed-forward, self-supervised method.

Learns 3D Gaussians and scene flow jointly.

Overall Comparison
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e Unhandled lighting variations may lead to visual harmony problems;
This can be solved by building a light model.

e Novel view synthesis may fail under large camera trajectory
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e Input:I: Image, P: Pose, PC: Point Cloud
e Decomp: BBox: Bounding Box, Self: Self-Supervised
e Rendering: D: Depth, Sem: Semantic, SFlow: 3D Scene Flow
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