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Abstract—In dynamic environments, traditional SLAM
systems struggle to maintain accurate localization and
mapping due to the presence of moving objects that
violate the static-world assumption. To address this chal-
lenge, we propose a robust and modular dynamic SLAM
framework that enhances ORB-SLAM3 by integrating
real-time dynamic region segmentation and optical flow-
based motion analysis. Our method leverages FastSAM
and YOLO11n-seg to detect potentially dynamic regions,
which are further refined using dense optical flow to
identify true motion. These dynamic regions are masked
to exclude moving region feature points before SLAM
processing, enabling improved camera trajectory tracking.
Experimental results on the TUM RGB-D and Bonn
RGB-D datasets demonstrate significant improvements in
localization accuracy and runtime efficiency, achieving
real-time performance without requiring prior knowledge
of object classes. Our project page can be found here:
https://github.com/ycsun2113/HybridDyn VSLAM.git.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has
emerged as a cornerstone in robotics, augmented reality,
and autonomous navigation. Traditional SLAM systems,
such as ORB-SLAM [1], perform well in static environ-
ments. However, their accuracy significantly deteriorates
in dynamic scenes due to moving objects that violate
the static-world assumption. Overcoming this limitation
is essential for deploying SLAM-based systems in real-
world, unstructured environments.

A common strategy to mitigate this issue involves
detecting and masking dynamic regions. Semantic seg-
mentation is often used to identify potentially dynamic
areas. However, this approach has notable shortcomings:
it may fail to detect unknown dynamic objects and often
produces masks that include both static and dynamic
elements, thus reducing detection accuracy.

In this work, we propose a dynamic-aware SLAM
pipeline that improves the robustness of ORB-SLAM3
[2] in dynamic environments by integrating a real-time
dynamic object detection and masking module. Specif-
ically, we leverage FastSAM [3] and YOLO11n-seg
[4], two recent state-of-the-art real-time segmentation
models, to segment potentially dynamic regions within
the scene. Optical flow is then employed to generate
dynamic masks within these regions, enabling precise
identification of truly dynamic areas in the scene. The
resulting masks are passed into ORB-SLAM3 [2] to filter

out ORB feature points in dynamic regions for estimation
and tracking.

Our system is modular and efficient. We validate
our approach through extensive experiments. Results
show that our method significantly improves localization
accuracy in dynamic scenes compared to baseline ORB-
SLAM3 [2], while maintaining real-time performance.

II. RELATED WORKS

Visual SLAM (V-SLAM) has been extensively studied
in recent years, primarily due to the availability of low-
cost sensors and the potential for semantic information
extension. V-SLAM approaches can generally be cate-
gorized into direct-based and feature-based approaches.
Dense-based V-SLAM methods, such as DVO-SLAM
[5], leverage dense information from RGB-D sensors,
minimizing the photometric and the depth error to es-
timate camera motion and reconstruct the environment
with high accuracy. Feature-based V-SLAM approaches,
such as ORB-SLAM [1] and its variants [6, 2], rely
on keypoint-based feature extraction and matching tech-
niques (e.g., ORB features) to estimate camera trajec-
tories and build maps of the environment. These sys-
tems are compatible with various sensor configurations,
including monocular, stereo, RGB-D, or visual-inertial
setups. While both dense-based and feature-based V-
SLAM approaches have demonstrated high accuracy and
robustness across a wide range of static environments,
their performance often degrades in dynamic environ-
ments, where moving objects can lead to inaccuracies in
both mapping and localization.

To address the limitations of traditional SLAM sys-
tems in dynamic environments, recent research has
focused on developing SLAM systems that are ro-
bust to dynamic scenes. Many approaches detect and
mask dynamic objects, such as DynaSLAM [7] enhance
ORB-SLAM2 [6] by integrating object segmentation
and multi-view geometry to detect and mask dynamic
objects. While DynaSLAM [7] achieves significantly
improved camera tracking and mapping performance
in dynamic environments, this kind of methods relies
heavily on pre-trained segmentation networks such as
Mask R-CNN [8] and often runs offline due to the high
computational demands of segmentation. Additionally, if
a moving object is not recognized by the segmentation
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model, it may introduce errors in SLAM estimation.
Panoptic-SLAM [9] was proposed to address this issue.
By using panoptic segmentation, it filters dynamic points
without relying solely on labeled objects. However, its
heavy computational load prevents real-time operation.
OVD-SLAM [10] utilizes optical flow and object-level
segmentation to jointly optimize camera poses and dy-
namic object trajectories, enabling more accurate scene
understanding in highly dynamic settings. However, it
requires reliable detection and could become unreliable
or computationally intensive in complex environments.
However, existing methods often suffer from high com-
putational cost, dependence on labeled data, or limited
real-time performance. These limitations motivate the
need for a more efficient and generalizable approach to
dynamic scene handling in SLAM.

III. METHODOLOGY

To achieve robust SLAM performance in dynamic
environments containing labeled and unlabeled moving
objects, we designed a SLAM system that combines
object segmentation with optical flow analysis to detect
dynamic regions and remove dynamic objects’ key-
points. Our approach utilizes RGB-D input and consists
of dynamic region masking and tracking. The overall
workflow is shown as Figure 1.

Fig. 1. System overview of our proposed method.

A. Dynamic Region Masks Generation

To improve the tracking performance of ORB-SLAM3
[2] in dynamic environments, we developed a dynamic
mask generation pipeline that detects and masks highly
dynamic regions from RGB images. Our method com-
bines semantic segmentation using YOLO11n [4] seg-
mentation model, instance segmentation using FastSAM
[3] segment everything model, and motion analysis via
optical flow. This hybrid approach leverages semantic
and motion information to identify dynamic regions and
generate masks accurately overall algorithm is shown in
Algorithm 1.

1) Dataset Preparation (lines 1-2): The RGB image
sequences are loaded from the defined path. All images
are sorted by their timestamps.

2) Semantic and Instance Segmentation (lines 5-6):
We employ two segmentation models and compare their
effectiveness for dynamic object masking: (1) FastSAM
[3] segment everything model and (2) YOLO11n-seg [4].
FastSAM [3] is a fast and efficient variant of Segment
Anything Model (SAM) [11] trained on 2% of SA-1B
with 50x faster inference. We initially chose FastSAM
due to its ability to segment everything in the scene,
including unlabeled objects. This characteristic is useful
when there exist undetectable and unlabeled moving
objects in the environment, which could lead to tracking
inaccuracies. YOLO11-seg [4], on the other hand, is
a lightweight segmentation variant of the YOLO11 [4]
architecture. While it only segments objects with known
labels, it excels at detecting dynamic object classes. We
defined a list of highly dynamic object categories, such
as people, cars, and animals, and prioritized them during
dynamic region checking.

Through experiments, we observed that FastSAM
sometimes produces fragmented segmentation and
masks. For example, a moving person may only be par-
tially segmented, which leads to inaccuracy in masking.
To address this issue, we combined YOLO11n-seg with
FastSAM to enhance our dynamic object segmentation.
By combining two segmentation methods, we achieved a
more robust approach for dynamic region masking. Fast-
SAM allows us to capture unlabeled dynamic objects,
while YOLO11n-seg provides reliable segmentation for
key dynamic categories, see comparisons in Figure 2.
A comparison of the results from different segmentation
method combinations can be found in Section IV.

3) Optical Flow Estimation (lines 7-11): Using seg-
mentation is insufficient to determine whether an object
is moving, as not all dynamic objects belong to pre-
defined highly dynamic classes, and FastSAM segments
everything model segment unlabeled objects. To improve
the accuracy, we apply optical flow estimation after
segmentation to verify whether each segmented region
is dynamic.

To estimate the motion between each frame, we
convert two consecutive RGB frames Ii and Ii+1 to
grayscale and compute dense optical flow using the
Gunnar Farneback method, which we implemented by
using cv2.calcOpticalF lowFarneback() function in
OpenCV. Gunnar Farneback method is a method to
calculate dense optical flow, which looks all points in
the two frames and detects the pixel intensity change.
For each pixel p, it computes the flow field:

F (p) = v⃗(p) = (u(p), v(p)) (1)



Fig. 2. Reliability comparison of dynamic region detection using FastSAM and YOLOn-seg with optical flow. Yellow circles show highly
dynamic objects; red circles indicate segmentation failures. Fusing both methods leads to more robust dynamic masking.

where u(p) and v(p) represent the horizontal and vertical
motion, respectively. Then, the flow magnitude can be
calculated by:

M(p) =
√

(u(p))2 + (v(p))2 (2)

This gives a dense magnitude map that reflects pixel-
wise motion between two frames.

4) Dynamic Regions Classification (lines 12-23):
Due to camera movement, the entire image typically
exhibits optical flow, even for static regions. Therefore,
we compare the mean flow magnitude of each segmented
region against that of a reference background region.
If the segmented region’s flow magnitude significantly
exceeds the background, we classify it as a dynamic
region.

We tested two methods to define the background re-
gion: (1) Depth-based: We incorporate the depth images
for each frame, regions with greater depth (e.g., walls)
are selected. However, this often misclassified static floor
that closer to the camera as dynamic. (2) YOLO11n-seg
mask exclusion: Areas outside the YOLO11n-seg masks
are treated as background. This method is more reli-
able, as YOLO11n-seg typically does not segment static
surfaces like walls and floors, while FastSAM tends to
include these static regions. Then, we compute the ratio
r between the masked region and the background flow:

r =
mean flow magnitude in masked region

mean flow magnitude in background region
(3)

If the ratio of YOLO11-seg’s mask ryolo > ϵdyna,yolo

or the ratio of FastSAM’s mask rfs > ϵdyna,fs, the
corresponding masked region is treated as a dynamic
region. We set different threshold values for YOLO11n-
seg masks (ϵdyna,yolo) and FastSAM masks (ϵdyna,fs)
due to their segmentation characteristics. YOLO11n-seg
tends to produce larger segmented masks that cover the
whole object areas, resulting in lower average flow mag-
nitudes for each region. In contrast, FastSAM segments
objects more finely and more fragmentally, which can
lead to higher localized flow magnitudes. If we use
the same threshold for both, YOLO11n-seg masks may
incorrectly classify a moving human as static, while
FastSAM masks may classify many small surrounding
fragments as dynamic. We found that setting ϵdyna,yolo
as 1.15 and ϵdyna,fs as 1.7 yields reliable dynamic region
masks.

5) Generate Binary Masks (lines 24-27): All dynamic
region masks from both YOLO11n-seg and FastSAM
are aggregated into a single binary mask after the above
dynamic checking. To ensure full coverage that can
remove the dynamic key points in ORB-SLAM3, each
mask is dilated using a 9*9 morphological kernel. Then,
the mask can be used by ORB-SLAM3 to remove key
points in dynamic regions during tracking.

B. Dynamic Keypoints Removing and Tracking

In this section, we detail our tracking pipeline, which
is built upon the fundation of ORB-SLAM3 [2]. Tra-
ditional methods often suffer from instable tracking in
the dynamic environment since the moving objects will
affect the pose estimation. To address this issue, we



Algorithm 1 Dynamic Region Masks Generator
Require: RGB images path img path, YOLO11n Seg-

mentation model Myolo, FastSAM Everything model
Mfs, A list of highly dynamic object’s classes
dy obj class;

1: img ← ReadAndSortImages(img path);
2: Nimg ← number of images;
3: for i = 0 : Nimg - 1 do
4: I1, I2 ← img[i], img[i+ 1];
5: Segyolo, Segfs ←Myolo(I1),Mfs(I1);
6: Maskyolo,Maskfs ← Segyolo, Segfs masks;
7: F = calcOpticalFlowFarneback(I1, I2);
8: all masks yolo← ∪ of all Mskyolo in I1;
9: background = ¬all masks yolo

10: Fbg ← optical flow in background;
11: µFbg

← mean optical flow in background;
dyna obj masks← ∅

12: for each mask myolo,mfs in Maskyolo,Maskfs
do

13: µFm,yolo
← mean optical flow in myolo;

14: µFm,fs
← mean optical flow in mfs;

15: ryolo = µFm,yolo
/µFbg

;
16: rfs = µFm,fs

/µFbg
;

17: if myolo.class in dy obj class or ryolo >
ϵdyna,yolo then

18: dyna obj masks.append(myolo);
19: end if
20: if rfs > ϵdyna,fs then
21: dyna obj masks.append(mfs);
22: end if
23: end for
24: DyMask = zeros like(I1);
25: for each dymask in dyna obj masks do
26: DyMask[dymask] = 255;
27: end for
28: end for

incorporate a dynamic region mask to filter out the
feature points on potentially moving objects. The key
steps of our tracking thread are list below.

1) ORB Feature extraction: We begin the pose track-
ing by extracting ORB (Oriented FAST and Rotated
BRIEF) [12] feature, which are descriptors designed for
efficient and robust keypoint detection. In our system, we
first extract ORB features from the raw input images.
Then, these features are used to establish correspon-
dences between the current frame and previous frames,
which allow us to estimate the the camera pose.

2) Remove Dynamic Feature Points: Although we
successfully obtain correspondences between the current
and previous frames, feature points located on dynamic
objects can significantly decrease localization accuracy.
To deal with this, we use a dynamic region mask to

exclude these features, which means that ORB keypoints
that fall within the dynamic mask will be removed
during the process. This filtering reduces the chance
of including outlier correspondences caused by moving
objects. Through this method, it ensures that only static
scene elements are used for motion estimation, leading to
more stable and accurate camera tracking in dynamic en-
vironments. In our implementation, we modify Frame.cc
in the ORB-SLAM3 [2] source code to filter out the ORB
features within the dynamic regions.

3) Estimation and Localization: After filtering out
dynamic features, the remaining ORB features from
static objects are used to estimate the camera trajectory
and pose. Static keypoints are matched across frames,
and the camera pose is computed using the Perspective-
n-Point (PnP) algorithm with RANSAC to reject outliers.
This results in a robust estimation of the transformation
between frames. By relying solely on static features, the
system achieves more accurate and reliable localization
in dynamic environments.

IV. RESULTS

A. Implementation

In our implementation, we modified the open source
code from ORB-SLAM3 to integrate our dynamic region
masks for dynamic features filtering and build the docker
container for ORB-SLAM3 using: ORB-SLAM3 Docker.
Our code is available at: https://github.com/ycsun2113/
HybridDyn VSLAM.git.

B. Experimental Setup

To evaluate the performance of our dynamic-
aware SLAM system, we conduct experiments on
two widely used dynamic RGB-D datasets and se-
lected three sequences from each: fr3_w_half,
fr3_w_xyz, and fr3_w_static from TUM RGB-
D [13] and moving_no_box, placing_no_box,
and balloon2 from Bonn RGB-D [14]. We compare
the tracking performance of our approach against ORB-
SLAM3 [2] and DynaSLAM [7], using Absolute Trajec-
tory Error (ATE) as the primary metric. We also analyze
the runtime efficiency and segmentation effectiveness
using different dynamic region masking methods.

Our framework integrates YOLO11n-seg [4], Fast-
SAM [3], and Optical Flow. We use three different dy-
namic region mask methods for the evaluation, which are
YOLO11n-seg [4] with optical flow (Y +O), FastSAM
[3] with optical flow (F + O), and combining these
three together (Y + F + O). We then compared the
localization results of our methods with ORB-SLAM3
[2] and DynaSLAM [7].

https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/jahaniam/orbslam3_docker
https://github.com/ycsun2113/HybridDyn_VSLAM.git
https://github.com/ycsun2113/HybridDyn_VSLAM.git


fr3 w half fr3 w xyz fr3 w static moving no box placing no box balloon2
O

R
B

-S
L

A
M

3
D

yn
aS

L
A

M
F+

O
(O

ur
)

Y
+O

(O
ur

)
F+

Y
+O

(O
ur

)

Fig. 3. Trajectory comparison across different methods. The black curve represents the ground-truth camera trajectory, the blue curve shows
the estimated trajectory, and the red curves indicate the deviation between the ground-truth and estimated trajectories.

TABLE I
RESULTS OF ATE AND IMPROVEMENT RATE COMPARED WITH ORB-SLAM3 ON TUM [13] AND BONN [14] RGB-D DATASETS.

Dataset ORB-SLAM3 [2] DynaSLAM [7] F+O (Our) Y+O (Our) Y+F+O (Our)

ATE [m] ATE [m] ATE [m] Improvement [%] ATE [m] Improvement [%] ATE [m] Improvement [%]

fr3 w half 0.332 0.025 0.043 86.99% 0.031 90.66% 0.031 90.66%
fr3 w xyz 0.427 0.134 0.378 11.41% 0.018 95.82% 0.017 95.94%
fr3 w static 0.291 0.008 0.011 96.10% 0.015 94.82% 0.008 97.34%
moving no box 0.179 0.026 0.030 83.24% 0.049 72.76% 0.025 86.12%
placing no box 0.772 0.028 0.032 95.85% 0.031 96.04% 0.027 96.49%
balloon2 0.227 0.028 0.114 49.70% 0.032 85.70% 0.037 83.48%

C. Tracking Accuracy

Table I presents the Absolute Trajectory Error (ATE)
results from experiments conducted on six dynamic
scenes from the TUM RGB-D [13] and Bonn RGB-
D [14] datasets using various methods.

As shown, ORB-SLAM3 [2] struggles with dynamic
environments, it absolute trajectory errors and trajectory
difference show great inaccuracies in each dynamic
sequences. Our three methods achieve significant im-
provements compared to ORB-SLAM3, an improvement
rate of over 80% was achieved in most of the sequences,
demonstrating that the proposed pipeline effectively ad-
dresses ORB-SLAM’s limitations in dynamic environ-
ments.

Although DynaSLAM [7] shows well ATE perfor-
mance in several cases, it often suffers from tracking
loss issues. As shown in Figure 3, which visualizes the
ground truth and the estimated trajectories of different
methods, some results for DynaSLAM [7] display only
the black line (ground truth). This indicates that in
certain scenarios, the method fails to maintain tracking.

In our approach, the F+O configuration achieves con-
sistent improvements over the ORB-SLAM3 baseline in
most sequences. These results highlight the capability
of FastSAM in capturing dense object boundaries and
handling unlabeled dynamic objects. However, perfor-
mance degrades in high-dynamic scenes. Due to motion
blur from rapid scene movement, FastSAM may seg-



ment objects incorrectly. Its tendency to over-segment
also makes the results highly sensitive to the dynamic
threshold, affecting both masking and tracking accuracy.

The Y+O configuration consistently outperforms
the ORB-SLAM3 baseline, demonstrating YOLO11n’s
strength in identifying dynamic objects, with optical flow
reducing false positives. However, its reliance on prede-
fined classes limits its ability to detect unlabeled objects.
This leads to poorer performance in moving_no_box
and placing_no_box, where YOLO11n-seg [4] fails
to detect the moving, non-obstructive box.

Among all the methods, the Y+F+O configuration
achieves the highest tracking accuracy in four out of
six sequences. As previously discussed, the motivation
behind combining the two segmentation models was
to leverage their complementary strengths, a strategy
that has been validated by our results. By integrating
object-level segmentation with YOLO11n-seg [4] and
fine-grained instance segmentation with FastSAM [3],
further refined through motion filtering with optical flow
estimation, Y+F+O consistently outperforms other con-
figurations. Its robustness across diverse scenarios makes
it the most promising solution for dynamic SLAM.

D. Runtime Analysis

To achieve real-time applications, time efficiency is a
crucial metric for evaluation. Therefore, we separately
evaluate the inference time of the dynamic region mask
and the tracking time. Table II presents the runtime of
each method along with the hardware specifications used
for testing.

TABLE II
COMPARISON OF INFERENCE AND MEAN TRACKING TIME OF

DIFFERENT METHODS.

ORB-
SLAM3 [2]

Dyna-
SLAM [7]

F+O
(Our)

Y+O
(Our)

Y+F+O
(Our)

Platform (CPU) i9 i9 i9 i9 i9
Platform (GPU) RTX4060 Tesla M40 RTX4060 RTX4060 RTX4060
Inference Time [ms] - 195 15.09 11.213 28.05
Tracking Time [ms] 10-16 333.68 11-18 11-18 11-18

As you can see, DynaSLAM [7] spends nearly 0.2
seconds on dynamic mask generation due to its use of
Mask R-CNN, which is a relatively inefficient semantic
segmentation method. In contrast, our proposed methods
significantly reduce the mask inference time while main-
taining competitive tracking performance. For tracking
time, our approaches also show better efficiency, achiev-
ing faster performance compared to DynaSLAM [7]
while preserving or even improving tracking accuracy.

In conclusion, our approach demonstrates high track-
ing performance with high running efficiency, making it
well-suited for real-time dynamic SLAM applications.

The presentation video of our project can be found
here: https://youtu.be/QZCojxtFrqo.

V. CONCLUSIONS

In this work, we propose a lightweight and effective
dynamic SLAM pipeline that combines YOLO11n-seg
[4], FastSAM [3], and optical flow for dynamic region
masking. By filtering out dynamic objects before track-
ing, our system achieves robust camera pose estimation
even in challenging environments with motion and oc-
clusion. The use of YOLOv11n-seg [4] with optical flow
allows for effective segmentation of dynamic objects in
the scene. Also, the integration of FastSAM [3] with
optical flow allows us to identify unlabeled dynamic
regions that may be missed by YOLO-based methods.
This combination of these two segmentation methods
helps us to obtain more reliable dynamic region masks,
leading to a more comprehensive and robust strategy for
dynamic SLAM.

In addition, experimental results demonstrate that
our method achieves the lowest or second-lowest Ab-
solute Trajectory Error (ATE) across most sequences,
showing its robust and reliable tracking performance
in dynamic environments. Furthermore, the proposed
approach maintains efficient inference and tracking times
without experiencing tracking failures, making it well-
suited for real-time applications.

VI. FUTURE WORK

While our current approach demonstrates strong per-
formance in dynamic environments with real-time capa-
bility, several directions remain for future exploration:

• Real-world deployment: We aim to apply and
evaluate our method in real-world robotic to assess
its performance in real-time.

• Scene mapping and understanding: We plan to
render scene map and integrate with semantic seg-
mentation, which will allow the system to generate
richer scene representations and improve high-level
understanding.

• Depth integration: Incorporating depth informa-
tion, either from stereo cameras or depth sensors,
can further enhance the accuracy of dynamic object
detection. This will improve the SLAM perfor-
mances in more complex dynamic environments.

These improvements aim to make the system more
versatile and robust for deployment in complex, dynamic
real-world environments.
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